Stochastic Dynamics of Power System

JU Ping Hohai University

Oct. 2017 Wuhan, CHINA

I. Research Background of SDPS

II. Research on Model of SDPS

III. Research on Analysis of SDPS

IV. Research on Control of SDPS

V. Summary

Working to engineer a better world

Oscillations in Power Systems

> Occurred frequently

1.1 Background

> Unclear mechanism

1.1 Background

Stochastic Disturbances

- Integration of renewable generation
- Integration of new-type load
- > Integration of electronic
 - devices
- Is there any relation?

1.2 Randomness in Power Systems

Types

- Continuous stochastic variable: load, renewable generation, etc.
- Discrete stochastic event: fault location, fault type, network operation, etc.
- Difficulties
 - > Deterministic dynamics: DAE
 - > Stochastic dynamics: DAE + Randomness
- Problems

Engineering and Technology

> [1 or 0] $\implies P\{\bullet\} \in [1, 0]$

1.3 Research Framework Stochastic Dynamics of Power Systems

The Institution of

Engineering and Technology

I. Research Background of SDPS

II. Research on Model of SDPS

III. Research on Analysis of SDPS

IV. Research on Control of SDPS

V. Summary

2.1 Introduction to Model of SDPS

- **Topics**
 - > System model
 - Disturbance model
 - Comparisons
 - > Deterministic disturbance Stochastic process
 - > Time domain model Frequency domain model

2.2 Stochastic Model of System

- System Model --- Quasi Hamiltonian
 - Analysis method: Stochastic averaging method
 - > Quasi Hamiltonian System: Stochastic noises excited and dissipated Hamiltonian system

$$\begin{cases} \frac{dQ_i}{dt} = \frac{\partial H}{\partial P_i} \\ \frac{dP_i}{dt} = -\frac{\partial H}{\partial Q_i} - c_{ij}(\boldsymbol{Q}, \boldsymbol{P}) \frac{\partial H}{\partial P_j} + f_{ik}(\boldsymbol{Q}, \boldsymbol{P}) \boldsymbol{\xi}_k(t) + u_i(\boldsymbol{Q}, \boldsymbol{P}) \\ i, j = 1, 2, \cdots n; \ k = 1, 2, \cdots, m \end{cases}$$

2.3 Stochastic Model of Disturbance

Disturbance Model --- Power Spectrum

- > Similarity in the frequency domain
- > Logarithmic linearity

I. Research Background of SDPS

II. Research on Model of SDPS

III. Research on Analysis of SDPS

IV. Research on Control of SDPS

V. Summary

3.1 Introduction to Analysis of SDPS

Topics

- > Stochastic analysis of stability
- > Stochastic analysis of oscillation
- Stochastic analysis of security

Comparisons

- > Deterministic: stable (1) or unstable (0)
- Stochastic: statistics of stability

3.2 Stochastic Stability

- Theorem of Stochastic Stability
 - In a small-signal stable power system, if the stochastic
 disturbance is bounded, the system satisfies mean stability
 and mean square stability.
 - > This means that there are no new stability issues in power system under small stochastic disturbance.
 - ? Will new oscillation issues happen or not?

3.3 General Forced Oscillation under Small Stochastic Disturbance Input

- Model: linearized system model
- Source: stochastic, not a sine function
- Frequency characteristics: narrow-band, not single-valued

Output

$$S_u(f) \rightarrow \overline{H(f)} \rightarrow S_y(f) = |H(f)|^2 S_u(f)$$

> larger: $S_u(f)$ and $|H(f)|^2$

> 0:
$$S_u(f)$$
 or $|H(f)|^2 = 0$

smaller
$$S_u(f)$$
 or $|H(f)|^2$

Engineering and Technology

3.3 General Forced Oscillation

Mechanism

- Condition: frequency coverage, not the frequency equivalence
- Possibility: GFO occurs much more frequently than classic forced oscillation

3.3 General Forced Oscillation

GFO in Henan Power Grid

Engineering and Technology

> Active power of the inter-area UHV tie line

16

3.4 General Internal Resonance under Large Stochastic Disturbance

General Forced Oscillation

- Caused by small stochastic disturbance
- > Based on the linear system theory
- > Oscillation modes are completely decoupled

Nonlinear Internal Resonance

- The disturbance is large enough, so the system nonlinearity needs to be considered.
- > Nonlinear interaction exists among the oscillation modes
- Classic internal resonance: single-frequency disturbance
 - General internal resonance: large stochastic disturbance

3.4 General Internal Resonance

Mechanism

> The mode 1 is excited at first, which frequency characteristic is supposed to be narrow-band $\uparrow^{S_k(f)}$

> The input to mode 2 with interaction $S_g(f)$

$$g(z_1) = c_{11}^2 z_1^2$$

> Criterion

$$f_2 \in \left[0, \Delta f\right) \cup \left(2f_1 - \Delta f, 2f_1 + \Delta f\right)$$

Engineering and Technology

Working to engineer a better world

 $-\Delta f$ -

 f_k

 $2\alpha^2 c^2 \Delta f$

 $2f_k$

 $2\Delta f$

0

0

 $4\alpha^2 c^2 \Delta f^2 \delta(f)$

 $-4\alpha^2 c^2 \Delta f$

 Δf

3.4 General Internal Resonance

Case study

- Stochastic disturbance with narrow-band 0.4~0.6Hz
- > Mode 1 is excited at first, according to GFO
- Mode 2 is then excited, although it is not covered

• Internal resonance occurs when the frequency ratio is around 1:2

The Institution of Engineering and Technology

3.5 Stochastic Security

Bounded fluctuation region

➤ OMIB – 2 dimension

- to keep the state fluctuation in limits s
- state space trajectory
- rectangle
- > MMS ? dimension
- **How to simplify?**
 - state space

Institution of

Engineering and Technology

$R(t \mid \boldsymbol{Y}_0)$ $= P\left\{ Y\left(\tau\right) \in \Omega_{B}, \tau \in \left(0, t\right] \mid Y\left(0\right) = Y_{0} \in \Omega_{B} \right\}$ > The intra-region probability of **BFR-E** - one dimension The Institution of Working to engineer a better world Engineering and Technology

3.5 Stochastic Security

The Intra-region Probability

- The intra-region probability of BFR-O
 - very high dimension

$$R(t \mid H_{0})$$

$$= P\{H(\tau) < \Omega_{E}, \tau \in (0, t] \mid H(0) = H_{0} < \Omega_{E}\}$$
System state
Initial state
BFR
$$\Omega_{E}$$

□ A analytic equation is developed for solving the IRP

 Ω_{p}

3.5 Stochastic Security

La Article Art

Much less consumed time

Case study

The Institution of

Engineering and Technology

□ Almost the same value

intensity of excitations: a > b > c > d

I. Research Background of SDPS

II. Research on Model of SDPS

III. Research on Analysis of SDPS

IV. Research on Control of SDPS

V. Summary

4.1 Introduction

Topics

> If the security is not satisfied, control should be put into use

- > Maximizing the security
- Comparisons
 - > Performance index: statistics of the objective function
 - Control law: nonlinearity

4.2 Maximizing the Security

Stochastic model with excitation Control

$$\begin{cases} d\delta_{i} = \omega_{N}\omega_{i}dt \\ d\omega_{i} = \frac{1}{M_{i}} \left[P_{mi} - D_{i}\omega_{i} - G_{ii}E_{qi}^{'2} - E_{qi}^{'}\sum_{j=1, j\neq i}^{n}E_{qj}^{'}B_{ij}\sin\delta_{ij} \right] dt + \frac{\sigma_{i}}{M_{i}}dB_{i}(t) \\ dE_{qi}^{'} = \frac{1}{T_{d0i}^{'}} \left[-b_{i}E_{qi}^{'} + c_{i}\sum_{j=1, j\neq i}^{n}E_{qj}^{'}B_{ij}\cos\delta_{ij} + E_{fdsi} + u_{fi} \right] dt \\ i = 1, 2, ..., n \end{cases}$$

4.2 Maximizing the Security

> Dynamic programming approach

$$\frac{\partial V}{\partial t} = -\sup_{u \in U} \begin{cases} \frac{1}{2} \sigma_{HH}^{2} (H, C_{i}) \frac{\partial^{2} V}{\partial H^{2}} + \left[m_{H} (H, C_{i}) + \left\langle \frac{u_{fi}}{T_{d0i}^{'}} \frac{\partial H}{\partial E_{qi}^{'}} \right\rangle \right] \frac{\partial V}{\partial H} \\ + \left[m_{C} (H, C_{i}) + \left\langle \frac{u_{fi}}{T_{d0i}^{'}} \frac{\partial C}{\partial E_{qi}^{'}} \right\rangle \right] \frac{\partial V}{\partial C_{i}} \end{cases}$$

• Control constraints:
$$\left| \frac{u_{fi}}{T_{d0i}^{'}} \right| \leq K_{i}$$

> Optimal control law

$$u_{fi} = K_i T_{d0i}^{'} \operatorname{sgn}\left(\frac{\partial H}{\partial E_{qi}^{'}} \frac{\partial V}{\partial H} + \frac{\partial C_i}{\partial E_{qi}^{'}} \frac{\partial V}{\partial C_i}\right)$$

4.2 Maximizing the Security

- Case Study
 - > Results
 - Security increases

I. Research Background of SDPS

II. Research on Model of SDPS

III. Research on Analysis of SDPS

IV. Research on Control of SDPS

General Forced Oscillations

- Small disturbance, linearized system
 - Condition: frequency coverage
 - Possibility: much larger

General Internal Resonant Oscillations

- Large disturbance, nonlinear system
 - Condition: frequency doubled approximately
 - Possibility: much larger

Editor-in-Chief		Indexed by	
Prof. Xiaoxin Zhou		ESCI INSPEC	
IEEE Fellow	CS	SAD(Chinese Science Abstract Database)	
Academician of CAS	ut the		
Jo	urnal		MORE
			CAN BE SCANNED !
Quarterly Journal		Open Access	
Jointly Published by		Free To Download on	
CSEE/IEEE/CEPRI		IEEE Digital Library	

