Stochastic Dynamics of Power System

JU Ping
Hohai University

Oct. 2017 • Wuhan, CHINA
Content

I. Research Background of SDPS

II. Research on Model of SDPS

III. Research on Analysis of SDPS

IV. Research on Control of SDPS

V. Summary
1.1 Background

- Oscillations in Power Systems

 - Occurred frequently
 - Unclear mechanism
1.1 Background

- **Stochastic Disturbances**
 - Integration of renewable generation
 - Integration of new-type load
 - Integration of electronic devices

- Is there any relation?
1.2 Randomness in Power Systems

Types
- **Continuous stochastic variable**: load, renewable generation, etc.
- **Discrete stochastic event**: fault location, fault type, network operation, etc.

Difficulties
- Deterministic dynamics: DAE
- Stochastic dynamics: DAE + Randomness

Problems
- $[1 \text{ or } 0] \quad P\{\bullet\} \in [1, 0]$
1.3 Research Framework

Stochastic Dynamics of Power Systems

- **Model of SDPS**
 - System model
 - Excitation model
- **Analysis of SDPS**
 - Stochastic stability
 - Stochastic oscillation
 - Stochastic security
- **Control of SDPS**
 - Minimizing the response
 - Maximizing the stability
 - Maximizing the security
Content

I. Research Background of SDPS

II. Research on Model of SDPS

III. Research on Analysis of SDPS

IV. Research on Control of SDPS

V. Summary

Working to engineer a better world
2.1 Introduction to Model of SDPS

- **Topics**
 - System model
 - Disturbance model

- **Comparisons**
 - Deterministic disturbance — Stochastic process
 - Time domain model — Frequency domain model
2.2 Stochastic Model of System

- **System Model --- Quasi Hamiltonian**
 - Analysis method: Stochastic averaging method
 - Quasi Hamiltonian System: Stochastic noises excited and
dissipated Hamiltonian system

\[
\begin{align*}
\frac{dQ_i}{dt} &= \frac{\partial H}{\partial P_i} \\
\frac{dP_i}{dt} &= -\frac{\partial H}{\partial Q_i} - c_{ij}(Q,P)\frac{\partial H}{\partial P_j} + f_{ik}(Q,P)\xi_k(t) + u_i(Q,P)
\end{align*}
\]

\(i, j = 1, 2, \cdots n; \quad k = 1, 2, \cdots, m\)
2.3 Stochastic Model of Disturbance

- **Disturbance Model --- Power Spectrum**
 - Similarity in the frequency domain
 - Logarithmic linearity

![Graphs showing similarity and logarithmic linearity across different generation levels.](image-url)
Content

I. Research Background of SDPS

II. Research on Model of SDPS

III. Research on Analysis of SDPS

IV. Research on Control of SDPS

V. Summary
3.1 Introduction to Analysis of SDPS

- **Topics**
 - Stochastic analysis of stability
 - Stochastic analysis of oscillation
 - Stochastic analysis of security

- **Comparisons**
 - Deterministic: stable (1) or unstable (0)
 - Stochastic: statistics of stability
3.2 Stochastic Stability

- Theorem of Stochastic Stability

- In a small-signal stable power system, if the stochastic disturbance is bounded, the system satisfies mean stability and mean square stability.

- This means that there are no new stability issues in power system under small stochastic disturbance.

? Will new oscillation issues happen or not?
3.3 General Forced Oscillation under Small Stochastic Disturbance

- **Input**
 - **Model:** linearized system model
 - **Source:** stochastic, not a sine function
 - **Frequency characteristics:** narrow-band, not single-valued

- **Output**

 \[S_u(f) \rightarrow [H(f)] \rightarrow S_y(f) = |H(f)|^2 S_u(f) \]

 - larger: \(S_u(f) \) and \(|H(f)|^2 \)
 - 0: \(S_u(f) \) or \(|H(f)|^2 = 0 \)
 - smaller: \(S_u(f) \) or \(|H(f)|^2 \)
3.3 General Forced Oscillation

- **Mechanism**

![Graph showing frequency coverage and equivalence]

- **Condition**: frequency coverage, not the frequency equivalence
- **Possibility**: GFO occurs much more frequently than classic forced oscillation
3.3 General Forced Oscillation

- GFO in Henan Power Grid
 - Active power of the inter-area UHV tie line

Measured

Simulated

![Graphs showing active power and PSD for measured and simulated data.](image-url)
3.4 General Internal Resonance under Large Stochastic Disturbance

- **General Forced Oscillation**
 - Caused by *small stochastic disturbance*
 - Based on the linear system theory
 - Oscillation modes are completely decoupled

- **Nonlinear Internal Resonance**
 - The disturbance is large enough, so the system nonlinearity needs to be considered.
 - Nonlinear interaction exists among the oscillation modes
 - Classic internal resonance: *single-frequency disturbance*
 - General internal resonance: *large stochastic disturbance*
3.4 General Internal Resonance

- **Mechanism**

 - The mode 1 is excited at first, which frequency characteristic is supposed to be narrow-band.

 - The input to mode 2 with interaction:
 \[g(z_1) = c_{11}z_1^2 \]

- **Criterion**

 \[f_2 \in \left[0, \Delta f \right] \cup \left(2f_1 - \Delta f, 2f_1 + \Delta f \right) \]
3.4 General Internal Resonance

- Case study
 - Stochastic disturbance with narrow-band 0.4~0.6Hz
 - Mode 1 is excited at first, according to GFO
 - Mode 2 is then excited, although it is not covered

- Internal resonance occurs when the frequency ratio is around 1:2
3.5 Stochastic Security

- Bounded fluctuation region
 - OMIB – 2 dimension
 - to keep the state fluctuation in limits
 - state space trajectory
 - rectangle
 - MMS – ? dimension

- How to simplify?
 - state space
 - energy function
3.5 Stochastic Security

- **The Intra-region Probability**
 - The intra-region probability of **BFR-O**
 - very high dimension
 \[
 R(t \mid Y_0) = P\{Y(\tau) \in \Omega_B, \tau \in (0,t) \mid Y(0) = Y_0 \in \Omega_B\}
 \]
 - The intra-region probability of **BFR-E**
 - one dimension
 \[
 R(t \mid H_0) = P\{H(\tau) < \Omega_E, \tau \in (0,t) \mid H(0) = H_0 < \Omega_E\}
 \]
 - A analytic equation is developed for solving the IRP
3.5 Stochastic Security

- **Case study**

 - Almost the same value
 - Much less consumed time

![Graph showing Intra-region probability, R vs Time, t (s) with intensity of excitations: a > b > c > d]

<table>
<thead>
<tr>
<th>Number of generators (n)</th>
<th>Consumed Time (t), s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Monte Carlo simulation</td>
</tr>
<tr>
<td>4</td>
<td>3.6</td>
</tr>
<tr>
<td>10</td>
<td>22.8</td>
</tr>
<tr>
<td>20</td>
<td>107.8</td>
</tr>
<tr>
<td>30</td>
<td>255.4</td>
</tr>
<tr>
<td>40</td>
<td>439.3</td>
</tr>
<tr>
<td>50</td>
<td>681.3</td>
</tr>
<tr>
<td>100</td>
<td>2833.4</td>
</tr>
</tbody>
</table>

intensity of excitations: a > b > c > d
Content

I. Research Background of SDPS

II. Research on Model of SDPS

III. Research on Analysis of SDPS

IV. Research on Control of SDPS

V. Summary
4.1 Introduction

- **Topics**
 - If the security is not satisfied, control should be put into use
 - Maximizing the security

- **Comparisons**
 - Performance index: statistics of the objective function
 - Control law: nonlinearity
4.2 Maximizing the Security

- **Stochastic model with excitation Control**

\[
\begin{align*}
 d\delta_i &= \omega_N \omega_i dt \\
 d\omega_i &= \frac{1}{M_i} \left[P_{mi} - D_i \omega_i - G_{ii} E_{qi}^2 - E_{qi} \sum_{j=1, j\neq i}^{n} E_{qj} B_{ij} \sin \delta_{ij} \right] dt + \frac{\sigma_i}{M_i} dB_i(t) \\
 dE_{qi}' &= \frac{1}{T_{d0i}} \left[-b_i E_{qi}' + c_i \sum_{j=1, j\neq i}^{n} E_{qj}' B_{ij} \cos \delta_{ij} + E_{fdis} + u_{fi} \right] dt \\
 i &= 1, 2, ..., n
\end{align*}
\]
4.2 Maximizing the Security

- Dynamic programming approach

\[
\frac{\partial V}{\partial t} = -\sup_{u \in U} \left\{ \frac{1}{2} \sigma_{HH}^2(H, C_i) \frac{\partial^2 V}{\partial H^2} + \left[m_H(H, C_i) + \left(\frac{u_{fi}}{T_{d0i}'} \frac{\partial H}{\partial E_{qi}'} \right) \right] \frac{\partial V}{\partial H} + m_C(H, C_i) + \left(\frac{u_{fi}}{T_{d0i}'} \frac{\partial C_i}{\partial E_{qi}'} \right) \right\} \frac{\partial V}{\partial C_i} \right\}
\]

- Control constraints: \[\left| \frac{u_{fi}}{T_{d0i}'} \right| \leq K_i \]

- Optimal control law

\[u_{fi} = K_i T_{d0i}' \text{ sgn} \left(\frac{\partial H}{\partial E_{qi}'} \frac{\partial V}{\partial H} + \frac{\partial C_i}{\partial E_{qi}'} \frac{\partial V}{\partial C_i} \right) \]

Working to engineer a better world
4.2 Maximizing the Security

- Case Study
 - Results
 - Security increases

![Graph showing security over time with different control settings](image)
Content

I. Research Background of SDPS

II. Research on Model of SDPS

III. Research on Analysis of SDPS

IV. Research on Control of SDPS

V. Summary
General Forced Oscillations
- Small disturbance, linearized system
 - Condition: frequency coverage
 - Possibility: much larger

General Internal Resonant Oscillations
- Large disturbance, nonlinear system
 - Condition: frequency doubled approximately
 - Possibility: much larger
CSEE Journal of Power & Energy Systems

Editor-in-Chief
Prof. Xiaoxin Zhou
IEEE Fellow
Academician of CAS

Indexed by
ESCI INSPEC
CSAD (Chinese Science Abstract Database)

Quarterly Journal
Jointly Published by
CSEE/IEEE/CEPRI

About the Journal
Open Access
Free To Download on
IEEE Digital Library

More Information Can Be Scanned!

Working to engineer a better world
Thank you!